
CS106A
Winter 2013-2014

Handout #10
January 17, 2014

Assignment 2: Welcome to Java!

 Based on an assignment by Eric Roberts and Mehran Sahami

Having helped Karel the Robot through the challenges of Assignment 1, you are now prepared to har-
ness the power of the Java programming language to solve a variety of problems. In this assignment,
you will work through seven small programs, each giving you a feel for how to use variables, methods,
control structures, the acm.graphics package, and other features of Java not present in Karel's world.
By the time you're done, you'll be ready to start building larger, more elaborate programs in Java.

The starter code for this assignment is available on the CS106A website under the “Assignments” tab.

Due Friday, January 31 at 3:15PM

Part One: The Pythagorean Theorem
One of the oldest results in mathematics is the Pythagorean theorem, which relates the lengths of the
three sides of a right triangle by the simple equality

a2 + b2 = c2

If a and b are known, then the value of c can be determined as

c = √a2
+b2

Most of this expression contains simple operators covered in Chapter 3. The one piece that’s missing
is taking square roots, which you can do by calling the standard function Math.sqrt. For example, the
statement

double y = Math.sqrt(x);

sets y to the square root of x.

Write a ConsoleProgram that accepts values for a and b as doubles (you can assume that a and b will
be positive) and then calculates the solution of c as a double. Your program should be able to dupli-
cate the following sample run, plus runs with other values:

- 1 -

Part Two: Hailstone Sequence
Douglas Hofstadter’s Pulitzer-prize-winning book Gödel, Escher, Bach contains many interesting
mathematical puzzles, many of which can be expressed in the form of computer programs. In Chapter
XII, Hofstadter mentions a wonderful problem that is well within the scope of the control statements
from Chapter 4. The problem can be expressed as follows:

Pick some positive integer and call it n.

If n is even, divide it by two.

If n is odd, multiply it by three and add one.

Continue this process until n is equal to one.

On page 401 of the Vintage edition, Hofstadter illustrates this process with the following example,
starting with the number 15:

15 is odd, so I make 3n+1: 46

46 is even, so I take half: 23

23 is odd, so I make 3n+1: 70

70 is even, so I take half: 35

35 is odd, so I make 3n+1: 106

106 is even, so I take half: 53

53 is odd, so I make 3n+1: 160

160 is even, so I take half: 80

80 is even, so I take half: 40

40 is even, so I take half: 20

20 is even, so I take half: 10

10 is even, so I take half: 5

5 is odd, so I make 3n+1: 16

16 is even, so I take half: 8

8 is even, so I take half: 4

4 is even, so I take half: 2

2 is even, so I take half: 1

As you can see from this example, the number goes up and down, but eventually—at least for all num-
bers that have ever been tried—comes down to end in 1. In some respects, this process is reminiscent
of the formation of hailstones, which get carried upward by the winds over and over again before they
finally descend to the ground. Because of this analogy, this sequence of numbers is sometimes called
the Hailstone sequence, although it goes by many other names as well.

Write a ConsoleProgram that reads in a number from the user and then displays the Hailstone se-
quence for that number, just as in Hofstadter’s book, followed by a line showing the number of steps
taken to reach 1. For example, your program should be able to produce a sample run that looks like
this:

- 2 -

The Collatz conjecture is that this process always eventually reaches 1. Although the hailstone se-
quence terminates for all numbers anyone has even tried, no one has yet proven or disproven the Col-
latz conjecture. The number of steps in the process can certainly get very large. How many steps, for
example, does your program take when n is 27?

 (xkcd)

- 3 -

Part Three: Find Range
Write a ConsoleProgram that reads in a list of integers, one per line, until the user enters a sentinel
value of 0. When the sentinel is read, your program should display the smallest and largest values in
the list, as illustrated in this sample run:

Your program should handle the following special cases:

• If the user enters only one value before the sentinel, the program should report that value as
both the largest and smallest.

• If the user enters the sentinel on the very first input line, then no values have been entered, and
your program should display a message to that effect.

Try designing your program so that it's easy to change which value is used as a sentinel.

- 4 -

Part Four: Artistry!
Now that you have the acm.graphics package available to you, you have the ability to turn the
computer into a digital canvas. To warm up with the graphics package, why not take a few minutes to
draw a pretty picture?

In this part of the assignment, your job is to draw a picture of your choice using the acm.graphics
package. The requirements for this part of the assignment are fairly lax (they're described shortly), so
feel free to use this as an opportunity to play around with Java and see what you can make with the
tools that are now available to you!

For this assignment, you should draw a picture with the following properties:

1. Your picture must use at least three different types of GObjects – for example, you could use
GLine, GRect, and GOval.

2. Your picture must have at least one filled object.

3. Your picture must have at least least two different colors of objects.

4. You must sign your name in the bottom-right corner. To do this, create a GLabel with the text
“Artistry by name,” where name is your name, and align it so that it is flush up against the bot-
tom-right corner of the window. Be sure that all the text is visible and that none of the letters in
the GLabel are cut off. (This GLabel doesn't count as one of the three different types of
GObjects that you're required to have. If you want to count GLabel as one of the GObject
types you're using, you'll need to have a second GLabel in your picture).

Although you're free to draw whatever you'd like, be sure to write clean and elegant code as you would
in the other parts of this assignment. Have a nice decomposition, comment your code, use helper meth-
ods where appropriate, and prefer constants to magic numbers.

There are many other graphics objects besides GRect, GOval, GLabel, and GLine and you are free
to use them in your program. Chapter 9 of the book gives a good overview of what else is out there.
You may find the GArc and GPolygon classes particularly useful. Chapter 9 also describes the
Color class in more detail, so if you're interested in colors beyond the standard set I would suggest
giving it a read.

- 5 -

To get your imaginations going, here are some sample pictures from the course staff:

GLabel, GRect, GLine

GPolygon, GRect, GOval, GPolygon, GArc, GLine

- 6 -

We recommend waiting until Wednesday's lecture to attempt these next problems. If you want to
start earlier, we recommend reading about methods in Chapter Five of The Art and Science of Java.

Part Five: Target
Suppose that you’ve been hired to produce a program that draws an image of an archery target—or, if
you prefer commercial applications, a logo for a national department store chain—that looks like this:

This figure is simply three GOval objects, two red and one white, drawn in the correct order. The outer
circle should have a radius of one inch (72 pixels), the white circle has a radius of 0.65 inches, and the
inner red circle has a radius of 0.3 inches. The figure should be centered in the window of a Graph-
icsProgram subclass.

Part Six: Fixing Broken Java
As you begin writing larger and larger programs, you will invariably end up making mistakes in your
code. Don't worry – this is a normal part of programming! To help you navigate the error messages
you'll get in Eclipse when your code isn't working correctly, as well as to give you practice debugging
an incorrect program, this part of the assignment asks you to fix a buggy Java program so that it works
correctly.

The FixingBrokenJava.java file contains a link to the course website, where you can download
the source file for this part of the assignment.* This program has serious errors – it doesn't compile, and
even if it did, it contains logic errors that prevent it from working correctly.

The program we've provided you reads in a positive integer from the user and then checks whether that
number is prime; that is, whether it has any divisors other than 1 and itself. For example, 3 is prime
and 31 is prime, but 54 is not (it's divisible by two) and 49 is not (it's divisible by seven). Unfortu-
nately, our provided program has many problems: it doesn't compile due to syntax errors, and the logic
itself is incorrect. Your task is to

• Fix the program so that it compiles, and

• Correct the logic errors so that it works correctly.

To reiterate – it is not enough to just get the program to compile! You also need to find and correct any
logic errors you encounter. Be sure to test your final program to make sure that it works correctly.

* We decided to put this file online rather than include it with the assignment, since the starter code has errors and we
didn't want Eclipse to keep pestering you mistakes in our code.

- 7 -

Part Seven: Pyramid
Write a GraphicsProgram subclass that draws a pyramid consisting of bricks arranged in horizontal
rows, so that the number of bricks in each row decreases by one as you move up the pyramid, as shown
in the following sample run:

The pyramid should be centered at the bottom of the window and should use constants for the follow-
ing parameters:

BRICK_WIDTH The width of each brick (by default, 30 pixels)

BRICK_HEIGHT The height of each brick (by default, 12 pixels)

BRICKS_IN_BASE The number of bricks in the base (by default, 14)

Although we've specified default values for these constants, your program should work correctly when
the constants are set to arbitrary nonnegative values.

- 8 -

Advice, Tips, and Tricks
Many of the programs you'll be writing need to work for a variety of user inputs. For example, the
Pythagorean Theorem program should be able to handle any positive real numbers as inputs, and the
Hailstone sequence should work for any positive integer the user enters. As with the Karel assignment,
please be sure to test your programs extensively before submitting them. It would be a shame if your
section leader dropped you from a ✓+ to a ✓ because you had forgotten to test your program on some
particular input.

Some of the other programs that you'll be writing need to reference constants defined in your program.
One of the major points of defining constants in a program is to make it easier to change your pro-
gram's behavior simply by adjusting the value assigned to that constant. During testing, we will run
your programs with a variety of different constants to check whether you have correctly and consis-
tently used constants throughout your program. Before submitting, check whether or not your programs
behave correctly when you vary the values of the constants in the program.

Style is just as important as ever in this assignment. Be sure to follow the style guidelines set out from
the Karel assignment – use a top-down design, comment your code as you go, have intelligent method
names, and indent your code properly. In addition to this, now that we've added variables, methods,
and constants into the mix, you should check your code for the following stylistic issues:

• Do you have clear names for your variables? In Java, the convention is that variables should
be written in lowerCamelCase and should clearly describe what values they represent. Avoid
single-letter variable names except in for loops or when the single letter really should be the
name of the variable. Try to be descriptive about what sort of value will be stored in the vari-
able.

• Do you make appropriate use of methods? In many of these programs you will end up writ-
ing similar code multiple times. Whenever possible, factor this similar code out into a method.
This makes the code easier to read, easier to maintain, easier to test, and easier to debug.

• Do you have appropriate inline comments? Method comments are a great way to make your
intentions easier to follow, but it is also important to comment the bodies of your methods as
well. Use comments to indicate what task different pieces of the code are trying to perform, or
to clarify logic that is not immediately obvious.

• Do you make appropriate use of constants? Several of the programs you'll write – especially
the graphics programs – will require values that will not be immediately evident from context.
When appropriate, introduce constants into your program to make the program more customiza-
ble and easier to read.

• Did you update the file comments appropriately? Java files should begin with a comment
describing who wrote the file and what the file contains. Did you update the comments at the
top of each Java file with information about your program?

This is not an exhaustive list of stylistic conventions, but it should help you get started. As always, if
you have any questions on what constitutes good style, feel free to stop on by the Tresidder LaIR with
questions, come visit us during office hours, or email your section leader with questions.

- 9 -

Writeup
As a last step in this assignment, we'd like you to answer three short questions about the programs
you've written. There is a file called writeup.txt included with the starter code for this programming
assignment. Before you submit your final version of the assignment, please answer those questions.
Your section leader can then discuss your answers during your interactive grading session for this as-
signment to help you improve your programming technique and style.

Your grade for the writeup is based purely on whether or not you actually answer the questions rather
than on the quality of your answers. That said, we'd appreciate it if you answered them honestly so that
your section leader can offer better feedback.

For reference, the questions we'd like you to answer in the writeup.txt file are listed here.

1. In the FindRange program, we suggested that you make it easy to change the value of the sen-
tinel that the user should enter to signal that they have no more data to enter. What changes
would you have to make to the program to make the sentinel have some other value, say, -1 or
137?

2. The FixingBrokenJava program that we gave you contained many bugs, some of which are
more obvious than others. What was your approach to finding those bugs? How did you test
your updated FixingBrokenJava program to ensure that you had gotten rid of all of the bugs?

3. In the Pyramid program, we've provided you some constants that you can change to adjust the
brick size and pyramid size. The program should work for any values of those constants, pro-
vided that the brick size and pyramid heights aren't negative. When testing your program, did
you try changing the values of those constants to see if the program would work correctly? If
so, what different values did you try setting those constants to?

Good luck!

- 10 -

